- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Dissanayake, Dilum (1)
-
Kuşkapan, Emre (1)
-
Çodur, Muhammed Yasin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Traffic accidents have become a major concern for governments, organizations and individuals worldwide due to the material and moral losses they cause. It is possible to reduce this concern by taking into account the research conducted by relevant institutions and organizations in this field. The main objective of this study is to categorize traffic accidents according to driver violation types and analyse them using machine learning algorithms and feature sensitivity to identify the most influential variables in each category. For this purpose, traffic accident reports that occurred in Erzurum province in the last 1 year were used to categorize and classify driver violation behaviour types. Five different machine learning algorithms, namely k‐nearest neighbour, support vector machines, naive Bayes, multilayer perception and random forest, were used to examine the success performance of the classification. Among these, 91% successful classification was obtained with the random forest algorithm. Based on the classification obtained from this algorithm, sensitivity analysis was used to reveal the variables that most affect each violation category. The results of the analysis revealed that driver age and vehicle type were the most influential variables for many types of violations. Thanks to this study, the problems were clearly identified by going into the details of driver violation behaviours. At the end of the study, measures to reduce driver violation behaviours were proposed. If the recommendations that can reduce driver behaviour are taken into consideration by transportation authorities and policy makers, traffic accidents can be significantly reduced.more » « less
An official website of the United States government
